Tail-weighted measures of dependence
Pavel Krupskii and
Harry Joe
Journal of Applied Statistics, 2015, vol. 42, issue 3, 614-629
Abstract:
Multivariate copula models are commonly used in place of Gaussian dependence models when plots of the data suggest tail dependence and tail asymmetry. In these cases, it is useful to have simple statistics to summarize the strength of dependence in different joint tails. Measures of monotone association such as Kendall's tau and Spearman's rho are insufficient to distinguish commonly used parametric bivariate families with different tail properties. We propose lower and upper tail-weighted bivariate measures of dependence as additional scalar measures to distinguish bivariate copulas with roughly the same overall monotone dependence. These measures allow the efficient estimation of strength of dependence in the joint tails and can be used as a guide for selection of bivariate linking copulas in vine and factor models as well as for assessing the adequacy of fit of multivariate copula models. We apply the tail-weighted measures of dependence to a financial data set and show that the measures better discriminate models with different tail properties compared to commonly used risk measures - the portfolio value-at-risk and conditional tail expectation.
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2014.980787 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:42:y:2015:i:3:p:614-629
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2014.980787
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().