Variable selection via a multi-stage strategy
Jing Chang and
Herbert K.H. Lee
Journal of Applied Statistics, 2015, vol. 42, issue 4, 762-774
Abstract:
Variable selection for nonlinear regression is a complex problem, made even more difficult when there are a large number of potential covariates and a limited number of datapoints. We propose herein a multi-stage method that combines state-of-the-art techniques at each stage to best discover the relevant variables. At the first stage, an extension of the Bayesian Additive Regression tree is adopted to reduce the total number of variables to around 30. At the second stage, sensitivity analysis in the treed Gaussian process is adopted to further reduce the total number of variables. Two stopping rules are designed and sequential design is adopted to make best use of previous information. We demonstrate our approach on two simulated examples and one real data set.
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2014.985640 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:42:y:2015:i:4:p:762-774
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2014.985640
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().