EconPapers    
Economics at your fingertips  
 

Generalized Nelson-Siegel term structure model: do the second slope and curvature factors improve the in-sample fit and out-of-sample forecasts?

Wali Ullah, Yasumasa Matsuda and Yoshihiko Tsukuda

Journal of Applied Statistics, 2015, vol. 42, issue 4, 876-904

Abstract: The dynamic Nelson-Siegel (DNS) model and even the Svensson generalization of the model have trouble in fitting the short maturity yields and fail to grasp the characteristics of the Japanese government bonds yield curve, which is flat at the short end and has multiple inflection points. Therefore, a closely related generalized dynamic Nelson-Siegel (GDNS) model that has two slopes and curvatures is considered and compared empirically to the traditional DNS in terms of in-sample fit as well as out-of-sample forecasts. Furthermore, the GDNS with time-varying volatility component, modeled as standard EGARCH process, is also considered to evaluate its performance in relation to the GDNS. The GDNS model unanimously outperforms the DNS in terms of in-sample fit as well as out-of-sample forecasts. Moreover, the extended model that accounts for time-varying volatility outpace the other models for fitting the yield curve and produce relatively more accurate 6- and 12-month ahead forecasts, while the GDNS model comes with more precise forecasts for very short forecast horizons.

Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2014.993363 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:42:y:2015:i:4:p:876-904

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2014.993363

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:42:y:2015:i:4:p:876-904