Determination of the functional form of the relationship of covariates to the log hazard ratio in a Cox model
B. Ganguli,
M. Naskar,
E.J. Malloy and
E.A. Eisen
Journal of Applied Statistics, 2015, vol. 42, issue 5, 1091-1105
Abstract:
In this paper, we review available methods for determination of the functional form of the relation between a covariate and the log hazard ratio for a Cox model. We pay special attention to the detection of influential observations to the extent that they influence the estimated functional form of the relation between a covariate and the log hazard ratio. Our paper is motivated by a data set from a cohort study of lung cancer and silica exposure, where the nonlinear shape of the estimated log hazard ratio for silica exposure plotted against cumulative exposure and hereafter referred to as the exposure-response curve was greatly affected by whether or not two individuals with the highest exposures were included in the analysis. Formal influence diagnostics did not identify these two individuals but did identify the three highest exposed cases. Removal of these three cases resulted in a biologically plausible exposure-response curve.
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2014.995607 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:42:y:2015:i:5:p:1091-1105
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2014.995607
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().