Bayesian joint modeling of correlated counts data with application to adverse birth outcomes
Cindy Xin Feng
Journal of Applied Statistics, 2015, vol. 42, issue 6, 1206-1222
Abstract:
In disease mapping, health outcomes measured at the same spatial locations may be correlated, so one can consider joint modeling the multivariate health outcomes accounting for their dependence. The general approaches often used for joint modeling include shared component models and multivariate models. An alternative way to model the association between two health outcomes, when one outcome can naturally serve as a covariate of the other, is to use ecological regression model. For example, in our application, preterm birth (PTB) can be treated as a predictor for low birth weight (LBW) and vice versa. Therefore, we proposed to blend the ideas from joint modeling and ecological regression methods to jointly model the relative risks for LBW and PTBs over the health districts in Saskatchewan, Canada, in 2000-2010. This approach is helpful when proxy of areal-level contextual factors can be derived based on the outcomes themselves when direct information on risk factors are not readily available. Our results indicate that the proposed approach improves the model fit when compared with the conventional joint modeling methods. Further, we showed that when no strong spatial autocorrelation is present, joint outcome modeling using only independent error terms can still provide a better model fit when compared with the separate modeling.
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2014.999031 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:42:y:2015:i:6:p:1206-1222
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2014.999031
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().