Robust estimation of mean and covariance for longitudinal data with dropouts
Guoyou Qin and
Zhongyi Zhu
Journal of Applied Statistics, 2015, vol. 42, issue 6, 1240-1254
Abstract:
In this paper, we study estimation of linear models in the framework of longitudinal data with dropouts. Under the assumptions that random errors follow an elliptical distribution and all the subjects share the same within-subject covariance matrix which does not depend on covariates, we develop a robust method for simultaneous estimation of mean and covariance. The proposed method is robust against outliers, and does not require to model the covariance and missing data process. Theoretical properties of the proposed estimator are established and simulation studies show its good performance. In the end, the proposed method is applied to a real data analysis for illustration.
Date: 2015
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2014.999033 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:42:y:2015:i:6:p:1240-1254
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2014.999033
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().