A comparison of the parameter estimation methods for bimodal mixture Weibull distribution with complete data
Aydin Karakoca,
Ulku Erisoglu and
Murat Erisoglu
Journal of Applied Statistics, 2015, vol. 42, issue 7, 1472-1489
Abstract:
Bimodal mixture Weibull distribution being a special case of mixture Weibull distribution has been used recently as a suitable model for heterogeneous data sets in many practical applications. The bimodal mixture Weibull term represents a mixture of two Weibull distributions. Although many estimation methods have been proposed for the bimodal mixture Weibull distribution, there is not a comprehensive comparison. This paper presents a detailed comparison of five kinds of numerical methods, such as maximum likelihood estimation, least-squares method, method of moments, method of logarithmic moments and percentile method (PM) in terms of several criteria by simulation study. Also parameter estimation methods are applied to real data.
Date: 2015
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2014.1000275 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:42:y:2015:i:7:p:1472-1489
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2014.1000275
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().