EconPapers    
Economics at your fingertips  
 

Analysing organic food buyers' perceptions with Bayesian networks: a case study in Turkey

E. Cene and F. Karaman

Journal of Applied Statistics, 2015, vol. 42, issue 7, 1572-1590

Abstract: Bayesian network (BN) is an efficient graphical method that uses directed acyclic graphs (DAG) to provide information about a set of data. BNs consist of nodes and arcs (or edges) where nodes represent variables and arcs represent relations and influences between nodes. Interest in organic food has been increasing in the world during the last decade. The same trend is also valid in Turkey. Although there are numerous studies that deal with customer perception of organic food and customer characteristics, none of them used BNs. Thus, this study, which shows a new application area of BNs, aims to reveal the perception and characteristics of organic food buyers. In this work, a survey is designed and applied in seven different organic bazaars in Turkey. Afterwards, BNs are constructed with the data gathered from 611 organic food consumers. The findings match with the previous studies as factors such as health, environmental factors, food availability, product price, consumers' income and trust to organization are found to influence consumers effectively.

Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2014.1001331 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:42:y:2015:i:7:p:1572-1590

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2014.1001331

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:42:y:2015:i:7:p:1572-1590