EconPapers    
Economics at your fingertips  
 

CUSUM chart for detecting range shifts when monotonicity of likelihood ratio is invalid

Guanfu Liu, Xiaolong Pu, Lei Wang and Dongdong Xiang

Journal of Applied Statistics, 2015, vol. 42, issue 8, 1635-1644

Abstract: It is often encountered in the literature that the log-likelihood ratios (LLR) of some distributions (e.g. the student t distribution) are not monotonic. Existing charts for monitoring such processes may suffer from the fact that the average run length (ARL) curve is a discontinuous function of control limit. It implies that some pre-specified in-control (IC) ARLs of these charts may not be reached. To guarantee the false alarm rate of a control chart lower than the nominal level, a larger IC ARL is usually suggested in the literature. However, the large IC ARL may weaken the performance of a control chart when the process is out-of-control (OC), compared with a just right IC ARL. To overcome it, we adjust the LLR to be a monotonic one in this paper. Based on it, a multiple CUSUM chart is developed to detect range shifts in IC distribution. Theoretical result in this paper ensures the continuity of its ARL curve. Numerical results show our proposed chart performs well under the range shifts, especially under the large shifts. In the end, a real data example is utilized to illustrate our proposed chart.

Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2015.1004625 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:42:y:2015:i:8:p:1635-1644

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2015.1004625

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:42:y:2015:i:8:p:1635-1644