Collinearity diagnostic applied in ridge estimation through the variance inflation factor
Roman Salmerón Gómez,
Jose Pérez (),
María Del Mar López Martín and
Catalina García García
Journal of Applied Statistics, 2016, vol. 43, issue 10, 1831-1849
Abstract:
The variance inflation factor (VIF) is used to detect the presence of linear relationships between two or more independent variables (i.e. collinearity) in the multiple linear regression model. However, the traditionally used VIF definitions encounter some problems when extended to the case of the ridge estimation (RE). This paper presents an extension of the VIF in RE by providing two alternative VIF expressions that overcome these problems in the general case. Some characteristics of these expressions are also presented and compared with the traditional expression. The results are illustrated with an economic example in the case of three independent variables and with a Monte Carlo simulation for the general case.
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2015.1120712 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:43:y:2016:i:10:p:1831-1849
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2015.1120712
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().