A new modified Jackknifed estimator for the Poisson regression model
Semra Türkan and
Gamze Özel
Journal of Applied Statistics, 2016, vol. 43, issue 10, 1892-1905
Abstract:
The Poisson regression is very popular in applied researches when analyzing the count data. However, multicollinearity problem arises for the Poisson regression model when the independent variables are highly intercorrelated. Shrinkage estimator is a commonly applied solution to the general problem caused by multicollinearity. Recently, the ridge regression (RR) estimators and some methods for estimating the ridge parameter k in the Poisson regression have been proposed. It has been found that some estimators are better than the commonly used maximum-likelihood (ML) estimator and some other RR estimators. In this study, the modified Jackknifed Poisson ridge regression (MJPR) estimator is proposed to remedy the multicollinearity. A simulation study and a real data example are provided to evaluate the performance of estimators. Both mean-squared error and the percentage relative error are considered as the performance criteria. The simulation study and the real data example results show that the proposed MJPR method outperforms the Poisson ridge regression, Jackknifed Poisson ridge regression and the ML in all of the different situations evaluated in this paper.
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2015.1125861 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:43:y:2016:i:10:p:1892-1905
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2015.1125861
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().