On elliptical multilevel models
Roberto F. Manghi,
Gilberto A. Paula and
Francisco José A. Cysneiros
Journal of Applied Statistics, 2016, vol. 43, issue 12, 2150-2171
Abstract:
Multilevel models have been widely applied to analyze data sets which present some hierarchical structure. In this paper we propose a generalization of the normal multilevel models, named elliptical multilevel models. This proposal suggests the use of distributions in the elliptical class, thus involving all symmetric continuous distributions, including the normal distribution as a particular case. Elliptical distributions may have lighter or heavier tails than the normal ones. In the case of normal error models with the presence of outlying observations, heavy-tailed error models may be applied to accommodate such observations. In particular, we discuss some aspects of the elliptical multilevel models, such as maximum likelihood estimation and residual analysis to assess features related to the fitting and the model assumptions. Finally, two motivating examples analyzed under normal multilevel models are reanalyzed under Student-t and power exponential multilevel models. Comparisons with the normal multilevel model are performed by using residual analysis.
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2015.1134445 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:43:y:2016:i:12:p:2150-2171
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2015.1134445
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().