An objective Bayesian analysis of the two-parameter half-logistic distribution based on progressively type-II censored samples
Jung-In Seo and
Suk-Bok Kang
Journal of Applied Statistics, 2016, vol. 43, issue 12, 2172-2190
Abstract:
This paper develops an objective Bayesian analysis method for estimating unknown parameters of the half-logistic distribution when a sample is available from the progressively Type-II censoring scheme. Noninformative priors such as Jeffreys and reference priors are derived. In addition, derived priors are checked to determine whether they satisfy probability-matching criteria. The Metropolis–Hasting algorithm is applied to generate Markov chain Monte Carlo samples from these posterior density functions because marginal posterior density functions of each parameter cannot be expressed in an explicit form. Monte Carlo simulations are conducted to investigate frequentist properties of estimated models under noninformative priors. For illustration purposes, a real data set is presented, and the quality of models under noninformative priors is evaluated through posterior predictive checking.
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2015.1134446 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:43:y:2016:i:12:p:2172-2190
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2015.1134446
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().