Choosing summary statistics by least angle regression for approximate Bayesian computation
Muhammad Faisal,
Andreas Futschik,
Ijaz Hussain and
Mitwali Abd-el.Moemen
Journal of Applied Statistics, 2016, vol. 43, issue 12, 2191-2202
Abstract:
Bayesian statistical inference relies on the posterior distribution. Depending on the model, the posterior can be more or less difficult to derive. In recent years, there has been a lot of interest in complex settings where the likelihood is analytically intractable. In such situations, approximate Bayesian computation (ABC) provides an attractive way of carrying out Bayesian inference. For obtaining reliable posterior estimates however, it is important to keep the approximation errors small in ABC. The choice of an appropriate set of summary statistics plays a crucial role in this effort. Here, we report the development of a new algorithm that is based on least angle regression for choosing summary statistics. In two population genetic examples, the performance of the new algorithm is better than a previously proposed approach that uses partial least squares.
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2015.1134447 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:43:y:2016:i:12:p:2191-2202
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2015.1134447
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().