A co-median approach to detect compositional outliers
M. A. Di Palma and
M. Gallo
Journal of Applied Statistics, 2016, vol. 43, issue 13, 2348-2362
Abstract:
Compositional data consist of vectors of positive values summing up to a unit or to some fixed constant. They find application in chemometrics, geology, economics, psychometrics and many other field of studies. In statistical analysis many theoretical efforts have been dedicated to identify procedures able to accomodate outliers included in the estimation of the model even in compositional data. The principal purpose of this work is to introduce an alternative robust procedure, defined as COMCoDa, capable to cope with compositional outliers and based on median absolute deviation (MAD) and correlation median. The new method is first evaluated in a simulation study and then on real data sets. The algorithm requires considerably less computational time than other procedures already existing in literature, it works well for huge compositional data sets at any level of contamination.
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2016.1163525 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:43:y:2016:i:13:p:2348-2362
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2016.1163525
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().