Identification of genomic markers correlated with sensitivity in solid tumors to Dasatinib using sparse principal components
Ahmed Hossain and
Hafiz T.A. Khan
Journal of Applied Statistics, 2016, vol. 43, issue 14, 2538-2549
Abstract:
Differential analysis techniques are commonly used to offer scientists a dimension reduction procedure and an interpretable gateway to variable selection, especially when confronting high-dimensional genomic data. Huang et al. used a gene expression profile of breast cancer cell lines to identify genomic markers which are highly correlated with in vitro sensitivity of a drug Dasatinib. They considered three statistical methods to identify differentially expressed genes and finally used the results from the intersection. But the statistical methods that are used in the paper are not sufficient to select the genomic markers. In this paper we used three alternative statistical methods to select a combined list of genomic markers and compared the genes that were proposed by Huang et al. We then proposed to use sparse principal component analysis (Sparse PCA) to identify a final list of genomic markers. The Sparse PCA incorporates correlation into account among the genes and helps to draw a successful genomic markers discovery. We present a new and a small set of genomic markers to separate out the groups of patients effectively who are sensitive to the drug Dasatinib. The analysis procedure will also encourage scientists in identifying genomic markers that can help to separate out two groups.
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2016.1142941 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:43:y:2016:i:14:p:2538-2549
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2016.1142941
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().