EconPapers    
Economics at your fingertips  
 

An exploratory data analysis in scale-space for interval-valued data

Cheolwoo Park, Yongho Jeon and Kee-Hoon Kang

Journal of Applied Statistics, 2016, vol. 43, issue 14, 2643-2660

Abstract: We propose an exploratory data analysis approach when data are observed as intervals in a nonparametric regression setting. The interval-valued data contain richer information than single-valued data in the sense that they provide both center and range information of the underlying structure. Conventionally, these two attributes have been studied separately as traditional tools can be readily used for single-valued data analysis. We propose a unified data analysis tool that attempts to capture the relationship between response and covariate by simultaneously accounting for variability present in the data. It utilizes a kernel smoothing approach, which is conducted in scale-space so that it considers a wide range of smoothing parameters rather than selecting an optimal value. It also visually summarizes the significance of trends in the data as a color map across multiple locations and scales. We demonstrate its effectiveness as an exploratory data analysis tool for interval-valued data using simulated and real examples.

Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2016.1142947 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:43:y:2016:i:14:p:2643-2660

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2016.1142947

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:43:y:2016:i:14:p:2643-2660