EconPapers    
Economics at your fingertips  
 

Bayes estimation for exponential distributions with common location parameter and applications to multi-state reliability models

Nabakumar Jana, Somesh Kumar and Kashinath Chatterjee

Journal of Applied Statistics, 2016, vol. 43, issue 15, 2697-2712

Abstract: This paper considers the estimation of the stress–strength reliability of a multi-state component or of a multi-state system where its states depend on the ratio of the strength and stress variables through a kernel function. The article presents a Bayesian approach assuming the stress and strength as exponentially distributed with a common location parameter but different scale parameters. We show that the limits of the Bayes estimators of both location and scale parameters under suitable priors are the maximum likelihood estimators as given by Ghosh and Razmpour [15]. We use the Bayes estimators to determine the multi-state stress–strength reliability of a system having states between 0 and 1. We derive the uniformly minimum variance unbiased estimators of the reliability function. Interval estimation using the bootstrap method is also considered. Under the squared error loss function and linex loss function, risk comparison of the reliability estimators is carried out using extensive simulations.

Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2016.1142950 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:43:y:2016:i:15:p:2697-2712

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2016.1142950

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:43:y:2016:i:15:p:2697-2712