Multivariate time series prediction using a hybridization of VARMA models and Bayesian networks
Hongyue Guo,
Xiaodong Liu and
Zhubin Sun
Journal of Applied Statistics, 2016, vol. 43, issue 16, 2897-2909
Abstract:
In this paper, a new hybrid model of vector autoregressive moving average (VARMA) models and Bayesian networks is proposed to improve the forecasting performance of multivariate time series. In the proposed model, the VARMA model, which is a popular linear model in time series forecasting, is specified to capture the linear characteristics. Then the errors of the VARMA model are clustered into some trends by K-means algorithm with Krzanowski–Lai cluster validity index determining the number of trends, and a Bayesian network is built to learn the relationship between the data and the trend of its corresponding VARMA error. Finally, the estimated values of the VARMA model are compensated by the probabilities of their corresponding VARMA errors belonging to each trend, which are obtained from the Bayesian network. Compared with VARMA models, the experimental results with a simulation study and two multivariate real-world data sets indicate that the proposed model can effectively improve the prediction performance.
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2016.1155111 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:43:y:2016:i:16:p:2897-2909
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2016.1155111
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().