Modified inference function for margins for the bivariate clayton copula-based SUN Tobit Model
F. Louzada and
P. H. Ferreira
Journal of Applied Statistics, 2016, vol. 43, issue 16, 2956-2976
Abstract:
This paper extends the analysis of the bivariate Seemingly Unrelated Regression (SUN) Tobit model by modeling its nonlinear dependence structure through the Clayton copula. The ability to capture/model the lower tail dependence of the SUN Tobit model where some data are censored (generally, left-censored at zero) is an useful feature of the Clayton copula. We propose a modified version of the (classical) Inference Function for Margins (IFS) method by Joe and XP [H. Joe and J.J. XP, The estimation method of inference functions for margins for multivariate models, Tech. Rep. 166, Department of Statistics, University of British Columbia, 1996], which we refer to as Modified Inference Function for Margins (MIFF) method, to obtain the (point) estimates of the marginal and Clayton copula parameters. More specifically, we employ the (frequenting) data augmentation technique at the second stage of the IFS method (the first stage of the MIFF method is equivalent to the first stage of the IFS method) to generate the censored observations and then estimate the Clayton copula parameter. This process (data augmentation and copula parameter estimation) is repeated until convergence. Such modification at the second stage of the usual estimation method is justified in order to obtain continuous marginal distributions, which ensures the uniqueness of the resulting Clayton copula, as stated by Solar's [A. Solar, Fonctions de répartition à n dimensions et leurs marges, Publ. de l'Institut de Statistique de l'Université de Paris 8 (1959), pp. 229–231] theorem; and also to provide an unbiased estimate of the association parameter (the IFS method provides a biased estimate of the Clayton copula parameter in the presence of censored observations in both margins). Since the usual asymptotic approach, that is the computation of the asymptotic covariance matrix of the parameter estimates, is troublesome in this case, we also propose the use of resampling procedures (bootstrap methods, such as standard normal and percentile, by Efron and Tibshirani [B. Efron and R.J. Tibshirani, An Introduction to the Bootstrap, Chapman & Hall, New York, 1993] to obtain confidence intervals for the model parameters.
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2016.1155204 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:43:y:2016:i:16:p:2956-2976
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2016.1155204
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().