Identification and classification of multiple outliers, high leverage points and influential observations in linear regression
A.A.M. Nurunnabi,
M. Nasser and
A.H.M.R. Imon
Journal of Applied Statistics, 2016, vol. 43, issue 3, 509-525
Abstract:
Detection of multiple unusual observations such as outliers, high leverage points and influential observations (IOs) in regression is still a challenging task for statisticians due to the well-known masking and swamping effects. In this paper we introduce a robust influence distance that can identify multiple IOs, and propose a sixfold plotting technique based on the well-known group deletion approach to classify regular observations, outliers, high leverage points and IOs simultaneously in linear regression. Experiments through several well-referred data sets and simulation studies demonstrate that the proposed algorithm performs successfully in the presence of multiple unusual observations and can avoid masking and/or swamping effects.
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2015.1070806 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:43:y:2016:i:3:p:509-525
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2015.1070806
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().