EconPapers    
Economics at your fingertips  
 

A statistical approach to address the problem of heaping in self-reported income data

S. Zinn and A. Würbach

Journal of Applied Statistics, 2016, vol. 43, issue 4, 682-703

Abstract: Self-reported income information particularly suffers from an intentional coarsening of the data, which is called heaping or rounding. If it does not occur completely at random -- which is usually the case -- heaping and rounding have detrimental effects on the results of statistical analysis. Conventional statistical methods do not consider this kind of reporting bias, and thus might produce invalid inference. We describe a novel statistical modeling approach that allows us to deal with self-reported heaped income data in an adequate and flexible way. We suggest modeling heaping mechanisms and the true underlying model in combination. To describe the true net income distribution, we use the zero-inflated log-normal distribution. Heaping points are identified from the data by applying a heuristic procedure comparing a hypothetical income distribution and the empirical one. To determine heaping behavior, we employ two distinct models: either we assume piecewise constant heaping probabilities, or heaping probabilities are considered to increase steadily with proximity to a heaping point. We validate our approach by some examples. To illustrate the capacity of the proposed method, we conduct a case study using income data from the German National Educational Panel Study.

Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2015.1077372 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:43:y:2016:i:4:p:682-703

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2015.1077372

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:43:y:2016:i:4:p:682-703