Missing value imputation method for disaster decision-making using K nearest neighbor
Xiaofei Ma and
Qiuyan Zhong
Journal of Applied Statistics, 2016, vol. 43, issue 4, 767-781
Abstract:
Due to destructiveness of natural disasters, restriction of disaster scenarios and some human causes, missing data usually occur in disaster decision-making problems. In order to estimate missing values of alternatives, this paper focuses on imputing heterogeneous attribute values of disaster based on an improved K nearest neighbor imputation (KNNI) method. Firstly, some definitions of trapezoidal fuzzy numbers (TFNs) are introduced and three types of attributes (i.e. linguistic term sets, intervals and real numbers) are converted to TFNs. Then the correlated degree model is utilized to extract related attributes to form instances that will be used in K nearest neighbor algorithm, and a novel KNNI method merging with correlated degree model is presented. Finally, an illustrative example is given to verify the proposed method and to demonstrate its feasibility and effectiveness.
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2015.1077377 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:43:y:2016:i:4:p:767-781
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2015.1077377
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().