Bootstrap hypothesis testing in generalized additive models for comparing curves of treatments in longitudinal studies
M.L. Nores and
M.P. Díaz
Journal of Applied Statistics, 2016, vol. 43, issue 5, 810-826
Abstract:
The study of the effect of a treatment may involve the evaluation of a variable at a number of moments. When assuming a smooth curve for the mean response along time, estimation can be afforded by spline regression, in the context of generalized additive models. The novelty of our work lies in the construction of hypothesis tests to compare two curves of treatments in any interval of time for several types of response variables. The within-subject correlation is not modeled but is considered to obtain valid inferences by the use of bootstrap. We propose both semiparametric and nonparametric bootstrap approaches, based on resampling vectors of residuals or responses, respectively. Simulation studies revealed a good performance of the tests, considering, for the outcome, different distribution functions in the exponential family and varying the correlation between observations along time. We show that the sizes of bootstrap tests are close to the nominal value, with tests based on a standardized statistic having slightly better size properties. The power increases as the distance between curves increases and decreases when correlation gets higher. The usefulness of these statistical tools was confirmed using real data, thus allowing to detect changes in fish behavior when exposed to the toxin microcystin-RR.
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2015.1078301 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:43:y:2016:i:5:p:810-826
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2015.1078301
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().