Modeling and predicting IBNR reserve: extended chain ladder and heteroscedastic regression analysis
Leonardo Costa,
Adrian Pizzinga and
Rodrigo Atherino
Journal of Applied Statistics, 2016, vol. 43, issue 5, 847-870
Abstract:
This work deals with two methodologies for predicting incurred but not reported (IBNR) actuarial reserves. The first is the traditional chain ladder, which is extended for dealing with the calendar year IBNR reserve. The second is based on heteroscedastic regression models suitable to deal with the tail effect of the runoff triangle -- and to forecast calendar year IBNR reserves as well. Theoretical results regarding closed expressions for IBNR predictors and mean squared errors are established -- for the case of the second methodology, a Monte Carlo study is designed and implemented for accessing finite sample performances of feasible mean squared error formulae. Finally, the methods are implemented with two real data sets. The main conclusions: (i) considering tail effects does not imply theoretical and/or computational problems; and (ii) both methodologies are interesting to design softwares for IBNR reserve prediction.
Date: 2016
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2015.1079305 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:43:y:2016:i:5:p:847-870
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2015.1079305
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().