Functional boxplots based on epigraphs and hypographs
B. Martin-Barragan,
R.E. Lillo and
J. Romo
Journal of Applied Statistics, 2016, vol. 43, issue 6, 1088-1103
Abstract:
Functional boxplot is an attractive technique to visualize data that come from functions. We propose an alternative to the functional boxplot based on depth measures. Our proposal generalizes the usual construction of the box-plot in one dimension related to the down-upward orderings of the data by considering two intuitive pre-orders in the functional context. These orderings are based on the epigraphs and hypographs of the data that allow a new definition of functional quartiles which is more robust to shape outliers. Simulated and real examples show that this proposal provides a convenient visualization technique with a great potential for analyzing functional data and illustrate its usefulness to detect outliers that other procedures do not detect.
Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2015.1092108 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:43:y:2016:i:6:p:1088-1103
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2015.1092108
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().