Exact confidence intervals for randomized response strategies
Guogen Shan
Journal of Applied Statistics, 2016, vol. 43, issue 7, 1279-1290
Abstract:
For surveys with sensitive questions, randomized response sampling strategies are often used to increase the response rate and encourage participants to provide the truth of the question while participants' privacy and confidentiality are protected. The proportion of responding ‘yes’ to the sensitive question is the parameter of interest. Asymptotic confidence intervals for this proportion are calculated from the limiting distribution of the test statistic, and are traditionally used in practice for statistical inference. It is well known that these intervals do not guarantee the coverage probability. For this reason, we apply the exact approach, adjusting the critical value as in [10], to construct the exact confidence interval of the proportion based on the likelihood ratio test and three Wilson-type tests. Two randomized response sampling strategies are studied: the Warner model and the unrelated model. The exact interval based on the likelihood ratio test has shorter average length than others when the probability of the sensitive question is low. Exact Wilson intervals have good performance in other cases. A real example from a survey study is utilized to illustrate the application of these exact intervals.
Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2015.1094454 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:43:y:2016:i:7:p:1279-1290
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2015.1094454
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().