Threshold selection for regional peaks-over-threshold data
M. Roth,
G. Jongbloed and
T.A. Buishand
Journal of Applied Statistics, 2016, vol. 43, issue 7, 1291-1309
Abstract:
A hurdle in the peaks-over-threshold approach for analyzing extreme values is the selection of the threshold. A method is developed to reduce this obstacle in the presence of multiple, similar data samples. This is for instance the case in many environmental applications. The idea is to combine threshold selection methods into a regional method. Regionalized versions of the threshold stability and the mean excess plot are presented as graphical tools for threshold selection. Moreover, quantitative approaches based on the bootstrap distribution of the spatially averaged Kolmogorov--Smirnov and Anderson--Darling test statistics are introduced. It is demonstrated that the proposed regional method leads to an increased sensitivity for too low thresholds, compared to methods that do not take into account the regional information. The approach can be used for a wide range of univariate threshold selection methods. We test the methods using simulated data and present an application to rainfall data from the Dutch water board Vallei en Veluwe.
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2015.1100589 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:43:y:2016:i:7:p:1291-1309
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2015.1100589
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().