EconPapers    
Economics at your fingertips  
 

On conditional risk estimation considering model risk

Fedya Telmoudi, Mohamed EL Ghourabi and Mohamed Limam

Journal of Applied Statistics, 2016, vol. 43, issue 8, 1386-1399

Abstract: Usually, parametric procedures used for conditional variance modelling are associated with model risk. Model risk may affect the volatility and conditional value at risk estimation process either due to estimation or misspecification risks. Hence, non-parametric artificial intelligence models can be considered as alternative models given that they do not rely on an explicit form of the volatility. In this paper, we consider the least-squares support vector regression (LS-SVR), weighted LS-SVR and Fixed size LS-SVR models in order to handle the problem of conditional risk estimation taking into account issues of model risk. A simulation study and a real application show the performance of proposed volatility and VaR models.

Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2015.1100595 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:43:y:2016:i:8:p:1386-1399

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2015.1100595

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:43:y:2016:i:8:p:1386-1399