EconPapers    
Economics at your fingertips  
 

Preprocessing of centred logratio transformed density functions using smoothing splines

J. Machalová, K. Hron and G.S. Monti

Journal of Applied Statistics, 2016, vol. 43, issue 8, 1419-1435

Abstract: With large-scale database systems, statistical analysis of data, occurring in the form of probability distributions, becomes an important task in explorative data analysis. Nevertheless, due to specific properties of density functions, their proper statistical treatment of these data still represents a challenging task in functional data analysis. Namely, the usual metric does not fully accounts for the relative character of information, carried by density functions; instead, their geometrical features are captured by Bayes spaces of measures. The easiest possibility of expressing density functions in an space is to use centred logratio transformation, even though this results in functional data with a constant integral constraint that needs to be taken into account in further analysis. While theoretical background for reasonable analysis of density functions is already provided comprehensively by Bayes spaces themselves, preprocessing issues still need to be developed. The aim of this paper is to introduce optimal smoothing splines for centred logratio transformed density functions that take all their specific features into account and provide a concise methodology for reasonable preprocessing of raw (discretized) distributional observations. Theoretical developments are illustrated with a real-world data set from official statistics and with a simulation study.

Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2015.1103706 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:43:y:2016:i:8:p:1419-1435

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2015.1103706

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:43:y:2016:i:8:p:1419-1435