Improving prediction performance of stellar parameters using functional models
Sylvain Robbiano,
Matthieu Saumard and
Michel Curé
Journal of Applied Statistics, 2016, vol. 43, issue 8, 1465-1476
Abstract:
This paper investigates the problem of prediction of stellar parameters, based on the star's electromagnetic spectrum. The knowledge of these parameters permits to infer on the evolutionary state of the star. From a statistical point of view, the spectra of different stars can be represented as functional data. Therefore, a two-step procedure decomposing the spectra in a functional basis combined with a regression method of prediction is proposed. We also use a bootstrap methodology to build prediction intervals for the stellar parameters. A practical application is also provided to illustrate the numerical performance of our approach.
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2015.1106448 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:43:y:2016:i:8:p:1465-1476
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2015.1106448
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().