An alternative circular smoothing method to nonparametric estimation of periodic functions
Zheng Xu
Journal of Applied Statistics, 2016, vol. 43, issue 9, 1649-1672
Abstract:
This article provides alternative circular smoothing methods in nonparametric estimation of periodic functions. By treating the data as ‘circular’, we solve the “boundary issue” in the nonparametric estimation treating the data as ‘linear’. By redefining the distance metric and signed distance, we modify many estimators used in the situations involving periodic patterns. In the perspective of ‘nonparametric estimation of periodic functions’, we present the examples in nonparametric estimation of (1) a periodic function, (2) multiple periodic functions, (3) an evolving function, (4) a periodically varying-coefficient model and (5) a generalized linear model with periodically varying coefficient. In the perspective of ‘circular statistics’, we provide alternative approaches to calculate the weighted average and evaluate the ‘linear/circular--linear/circular’ association and regression. Simulation studies and an empirical study of electricity price index have been conducted to illustrate and compare our methods with other methods in the literature.
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2015.1117590 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:43:y:2016:i:9:p:1649-1672
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2015.1117590
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().