EconPapers    
Economics at your fingertips  
 

Spatial prediction of crystalline defects observed in molecular dynamic simulations of plastic damage

Geoffrey Colin L. Peterson, Dong Li, Brian J. Reich and Donald Brenner

Journal of Applied Statistics, 2017, vol. 44, issue 10, 1761-1784

Abstract: Molecular dynamic computer simulation is an essential tool in materials science to study atomic properties of materials in extreme environments and guide development of new materials. We propose a statistical analysis to emulate simulation output with the ultimate goal of efficiently approximating the computationally intensive simulation. We compare several spatial regression approaches including conditional autoregression (CAR), discrete wavelets transform (DWT), and principle components analysis (PCA). The methods are applied to simulation of copper atoms with twin wall and dislocation loop defects, under varying tilt tension angles. We find that CAR and DWT yield accurate results but fail to capture extreme defects, yet PCA better captures defect structure.

Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2016.1221915 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:44:y:2017:i:10:p:1761-1784

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2016.1221915

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:44:y:2017:i:10:p:1761-1784