Marginal models for the association structure of hierarchical binary responses
André G. F. C. Costa,
Enrico A. Colosimo,
Aline B. M. Vaz,
José Luiz P. Silva and
Leila D. Amorim
Journal of Applied Statistics, 2017, vol. 44, issue 10, 1827-1838
Abstract:
Clustered binary responses are often found in ecological studies. Data analysis may include modeling the marginal probability response. However, when the association is the main scientific focus, modeling the correlation structure between pairs of responses is the key part of the analysis. Second-order generalized estimating equations (GEE) are established in the literature. Some of them are more efficient in computational terms, especially facing large clusters. Alternating logistic regression (ALR) and orthogonalized residual (ORTH) GEE methods are presented and compared in this paper. Simulation results show a slightly superiority of ALR over ORTH. Marginal probabilities and odds ratios are also estimated and compared in a real ecological study involving a three-level hierarchical clustering. ALR and ORTH models are useful for modeling complex association structure with large cluster sizes.
Date: 2017
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2016.1238042 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:44:y:2017:i:10:p:1827-1838
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2016.1238042
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().