Nonparametric estimation of mean residual quantile function under right censoring
P.G. Sankaran and
N.N. Midhu
Journal of Applied Statistics, 2017, vol. 44, issue 10, 1856-1874
Abstract:
In this paper, we develop non-parametric estimation of the mean residual quantile function based on right-censored data. Two non-parametric estimators, one based on the empirical quantile function and the other using the kernel smoothing method, are proposed. Asymptotic properties of the estimators are discussed. Monte Carlo simulation studies are conducted to compare the two estimators. The method is illustrated with the aid of two real data sets.
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2016.1238046 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:44:y:2017:i:10:p:1856-1874
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2016.1238046
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().