Multiple-index varying-coefficient models for longitudinal data
Hongmei Lin,
Wenchao Xu,
Riquan Zhang,
Jianhong Shi and
Yuedong Wang
Journal of Applied Statistics, 2017, vol. 44, issue 11, 1960-1978
Abstract:
In haemodialysis patients, vascular access type is of paramount importance. Although recent studies have found that central venous catheter is often associated with poor outcomes and switching to arteriovenous fistula is beneficial, studies have not fully elucidated how the effect of switching of access on outcomes changes over time for patients on dialysis and whether the effect depends on switching time. In this paper, we characterise the switching access type effect on outcomes for haemodialysis patients. This is achieved by using a new class of multiple-index varying-coefficient (MIVC) models. We develop a new estimation procedure for MIVC models based on local linear, profile least-square method and Cholesky decomposition. Monte Carlo simulation studies show excellent finite sample performance. Finally, we analyse the dialysis data using our method.
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2016.1238052 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:44:y:2017:i:11:p:1960-1978
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2016.1238052
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().