EconPapers    
Economics at your fingertips  
 

A varying coefficient approach to estimating hedonic housing price functions and their quantiles

Alan T. K. Wan, Shangyu Xie and Yong Zhou

Journal of Applied Statistics, 2017, vol. 44, issue 11, 1979-1999

Abstract: The varying coefficient (VC) model introduced by Hastie and Tibshirani [26] is arguably one of the most remarkable recent developments in nonparametric regression theory. The VC model is an extension of the ordinary regression model where the coefficients are allowed to vary as smooth functions of an effect modifier possibly different from the regressors. The VC model reduces the modelling bias with its unique structure while also avoiding the ‘curse of dimensionality’ problem. While the VC model has been applied widely in a variety of disciplines, its application in economics has been minimal. The central goal of this paper is to apply VC modelling to the estimation of a hedonic house price function using data from Hong Kong, one of the world's most buoyant real estate markets. We demonstrate the advantages of the VC approach over traditional parametric and semi-parametric regressions in the face of a large number of regressors. We further combine VC modelling with quantile regression to examine the heterogeneity of the marginal effects of attributes across the distribution of housing prices.

Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2016.1238053 (text/html)
Access to full text is restricted to subscribers.

Related works:
Working Paper: A varying coefficient approach to estimating hedonic housing price functions and their quantiles Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:44:y:2017:i:11:p:1979-1999

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2016.1238053

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:44:y:2017:i:11:p:1979-1999