EconPapers    
Economics at your fingertips  
 

Estimation of flood frequencies from data sets with outliers using mixed distribution functions

Milan Stojković, Stevan Prohaska and Nikola Zlatanović

Journal of Applied Statistics, 2017, vol. 44, issue 11, 2017-2035

Abstract: In this paper the estimation of high return period quantiles of the flood peak and volume in the Kolubara River basin are carried out. Estimation of flood frequencies is carried out on a data set containing high outliers which are identified by the Rosner’s test. Simultaneously, low outliers are determined by the multiple Grubbs–Beck. The next step involved the usage of the mixed distribution functions applied to a data set from three populations: floods with low outliers, normal floods and floods with high outliers. The contribution of the data set with low outliers is neglected, since it should underestimate the flood quantiles with large return periods. Consequently, the best fitted mixed distribution from the applied types (EV1, GEV, P3 and LP3) was determined by using the minimum standard error of fit.

Date: 2017
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2016.1238055 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:44:y:2017:i:11:p:2017-2035

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2016.1238055

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:44:y:2017:i:11:p:2017-2035