Bayesian inference for sinh-normal/independent nonlinear regression models
Filidor Vilca,
Caio L. N. Azevedo and
N. Balakrishnan
Journal of Applied Statistics, 2017, vol. 44, issue 11, 2052-2074
Abstract:
Sinh-normal/independent distributions are a class of symmetric heavy-tailed distributions that include the sinh-normal distribution as a special case, which has been used extensively in Birnbaum–Saunders regression models. Here, we explore the use of Markov Chain Monte Carlo methods to develop a Bayesian analysis in nonlinear regression models when Sinh-normal/independent distributions are assumed for the random errors term, and it provides a robust alternative to the sinh-normal nonlinear regression model. Bayesian mechanisms for parameter estimation, residual analysis and influence diagnostics are then developed, which extend the results of Farias and Lemonte [Bayesian inference for the Birnbaum-Saunders nonlinear regression model, Stat. Methods Appl. 20 (2011), pp. 423-438] who used the Sinh-normal/independent distributions with known scale parameter. Some special cases, based on the sinh-Student-t (sinh-St), sinh-slash (sinh-SL) and sinh-contaminated normal (sinh-CN) distributions are discussed in detail. Two real datasets are finally analyzed to illustrate the developed procedures.
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2016.1238058 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:44:y:2017:i:11:p:2052-2074
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2016.1238058
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().