EconPapers    
Economics at your fingertips  
 

Variation in caesarean delivery rates across hospitals: a Bayesian semi-parametric approach

M. Cannas, C. Conversano, F. Mola and E. Sironi

Journal of Applied Statistics, 2017, vol. 44, issue 12, 2095-2107

Abstract: This article presents a Bayesian semi-parametric approach for modeling the occurrence of cesarean sections using a sample of women delivering in 20 hospitals of Sardinia (Italy). A multilevel logistic regression has been fitted on the data using a Dirichlet process prior for modeling the random-effects distribution of the unobserved factors at the hospital level. Using the estimated random effects at the hospital level, a partition of the hospitals in terms of similar medical practice has been obtained that identifies different profiles of hospitals in terms of caesarean section risks. The limited number of clusters may be useful for suggesting policy implications that help to reduce the heterogeneity of caesarean delivery risks.

Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2016.1247785 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:44:y:2017:i:12:p:2095-2107

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2016.1247785

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:44:y:2017:i:12:p:2095-2107