Difference-based matrix perturbation method for semi-parametric regression with multicollinearity
Chien-Chia L. Huang,
Yow-Jen Jou and
Hsun-Jung Cho
Journal of Applied Statistics, 2017, vol. 44, issue 12, 2161-2171
Abstract:
This paper addresses the collinearity problems in semi-parametric linear models. Under the difference-based settings, we introduce a new diagnostic, the difference-based variance inflation factor (DVIF), for detecting the presence of multicollinearity in semi-parametric models. The DVIF is then used to device a difference-based matrix perturbation method for solving the problem. The electricities distribution data set is analyzed, and numerical evidences validate the effectiveness of the proposed method.
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2016.1247790 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:44:y:2017:i:12:p:2161-2171
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2016.1247790
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().