A new confidence interval in errors-in-variables model with known error variance
Liang Yan,
Rui Wang and
Xingzhong Xu
Journal of Applied Statistics, 2017, vol. 44, issue 12, 2204-2221
Abstract:
This paper considers constructing a new confidence interval for the slope parameter in the structural errors-in-variables model with known error variance associated with the regressors. Existing confidence intervals are so severely affected by Gleser–Hwang effect that they are subject to have poor empirical coverage probabilities and unsatisfactory lengths. Moreover, these problems get worse with decreasing reliability ratio which also result in more frequent absence of some existing intervals. To ease these issues, this paper presents a fiducial generalized confidence interval which maintains the correct asymptotic coverage. Simulation results show that this fiducial interval is slightly conservative while often having average length comparable or shorter than the other methods. Finally, we illustrate these confidence intervals with two real data examples, and in the second example some existing intervals do not exist.
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2016.1247793 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:44:y:2017:i:12:p:2204-2221
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2016.1247793
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().