Marshall–Olkin distribution: parameter estimation and application to cancer data
Yeşim Güney,
Yetkin Tuaç and
Olcay Arslan
Journal of Applied Statistics, 2017, vol. 44, issue 12, 2238-2250
Abstract:
In this study, as alternatives to the maximum likelihood (ML) and the frequency estimators, we propose robust estimators for the parameters of Zipf and Marshall–Olkin Zipf distributions. A small simulation study is given to illustrate the performance of the proposed estimators. We apply the proposed estimators to a real data set from cancer research to illustrate the performance of the proposed estimators over the ML, moments and frequency estimators. We observe that the robust estimators have superiority over the frequency estimators based on classical sample mean.
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2016.1252730 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:44:y:2017:i:12:p:2238-2250
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2016.1252730
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().