EconPapers    
Economics at your fingertips  
 

An evaluation of ridge estimator in linear mixed models: an example from kidney failure data

M. Revan Özkale and Funda Can

Journal of Applied Statistics, 2017, vol. 44, issue 12, 2251-2269

Abstract: This paper is concerned with the ridge estimation of fixed and random effects in the context of Henderson's mixed model equations in the linear mixed model. For this purpose, a penalized likelihood method is proposed. A linear combination of ridge estimator for fixed and random effects is compared to a linear combination of best linear unbiased estimator for fixed and random effects under the mean-square error (MSE) matrix criterion. Additionally, for choosing the biasing parameter, a method of MSE under the ridge estimator is given. A real data analysis is provided to illustrate the theoretical results and a simulation study is conducted to characterize the performance of ridge and best linear unbiased estimators approach in the linear mixed model.

Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2016.1252732 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:44:y:2017:i:12:p:2251-2269

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2016.1252732

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:44:y:2017:i:12:p:2251-2269