EconPapers    
Economics at your fingertips  
 

A Bayesian model for multiple change point to extremes, with application to environmental and financial data

Fernando Ferraz do Nascimento and Wyara Vanesa Moura e Silva

Journal of Applied Statistics, 2017, vol. 44, issue 13, 2410-2426

Abstract: Abrupt changes often occur for environmental and financial time series. Most often, these changes are due to human intervention. Change point analysis is a statistical tool used to analyze sudden changes in observations along the time series. In this paper, we propose a Bayesian model for extreme values for environmental and economic datasets that present a typical change point behavior. The model proposed in this paper addresses the situation in which more than one change point can occur in a time series. By analyzing maxima, the distribution of each regime is a generalized extreme value distribution. In this model, the change points are unknown and considered parameters to be estimated. Simulations of extremes with two change points showed that the proposed algorithm can recover the true values of the parameters, in addition to detecting the true change points in different configurations. Also, the number of change points was a problem to be considered, and the Bayesian estimation can correctly identify the correct number of change points for each application. Environmental and financial data were analyzed and results showed the importance of considering the change point in the data and revealed that this change of regime brought about an increase in the return levels, increasing the number of floods in cities around the rivers. Stock market levels showed the necessity of a model with three different regimes.

Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2016.1254733 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:44:y:2017:i:13:p:2410-2426

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2016.1254733

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:44:y:2017:i:13:p:2410-2426