A Monte Carlo-based pseudo-coefficient of determination for generalized linear models with binary outcome
Selen Cakmakyapan and
Haydar Demirhan
Journal of Applied Statistics, 2017, vol. 44, issue 14, 2458-2482
Abstract:
In this article, we focus on a pseudo-coefficient of determination for generalized linear models with binary outcome. Although there are numerous coefficients of determination proposed in the literature, none of them is identified as the best in terms of estimation accuracy, or incorporates all desired characteristics of a precise coefficient of determination. Considering this, we propose a new coefficient of determination by using a computational Monte Carlo approach, and exhibit main characteristics of the proposed coefficient of determination both analytically and numerically. We evaluate and compare performances of the proposed and nine existing coefficients of determination by a comprehensive Monte Carlo simulation study. The proposed measure is found superior to the existent measures when dependent variable is balanced or moderately unbalanced for probit, logit, and complementary log–log link functions and a wide range of sample sizes. Due to the extensive design space of our simulation study, we identify new conditions in which previously recommended coefficients of determination should be used carefully.
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2016.1257585 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:44:y:2017:i:14:p:2458-2482
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2016.1257585
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().