Estimation of the Burr type III distribution with application in unified hybrid censored sample of fracture toughness
Hanieh Panahi
Journal of Applied Statistics, 2017, vol. 44, issue 14, 2575-2592
Abstract:
In this paper, the statistical inference of the unknown parameters of a Burr Type III (BIII) distribution based on the unified hybrid censored sample is studied. The maximum likelihood estimators of the unknown parameters are obtained using the Expectation–Maximization algorithm. It is observed that the Bayes estimators cannot be obtained in explicit forms, hence Lindley's approximation and the Markov Chain Monte Carlo (MCMC) technique are used to compute the Bayes estimators. Further the highest posterior density credible intervals of the unknown parameters based on the MCMC samples are provided. The new model selection test is developed in discriminating between two competing models under unified hybrid censoring scheme. Finally, the potentiality of the BIII distribution to analyze the real data is illustrated by using the fracture toughness data of the three different materials namely silicon nitride (Si3N4), Zirconium dioxide (ZrO2) and sialon (Si6−xAlxOxN8−x). It is observed that for the present data sets, the BIII distribution has the better fit than the Weibull distribution which is frequently used in the fracture toughness data analysis.
Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2016.1258549 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:44:y:2017:i:14:p:2575-2592
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2016.1258549
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().