Generalized Poisson–Lindley linear model for count data
Weerinrada Wongrin and
Winai Bodhisuwan
Journal of Applied Statistics, 2017, vol. 44, issue 15, 2659-2671
Abstract:
The purpose of this paper is to develop a new linear regression model for count data, namely generalized-Poisson Lindley (GPL) linear model. The GPL linear model is performed by applying generalized linear model to GPL distribution. The model parameters are estimated by the maximum likelihood estimation. We utilize the GPL linear model to fit two real data sets and compare it with the Poisson, negative binomial (NB) and Poisson-weighted exponential (P-WE) models for count data. It is found that the GPL linear model can fit over-dispersed count data, and it shows the highest log-likelihood, the smallest AIC and BIC values. As a consequence, the linear regression model from the GPL distribution is a valuable alternative model to the Poisson, NB, and P-WE models.
Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2016.1260095 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:44:y:2017:i:15:p:2659-2671
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2016.1260095
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().