EconPapers    
Economics at your fingertips  
 

Generalized Poisson–Lindley linear model for count data

Weerinrada Wongrin and Winai Bodhisuwan

Journal of Applied Statistics, 2017, vol. 44, issue 15, 2659-2671

Abstract: The purpose of this paper is to develop a new linear regression model for count data, namely generalized-Poisson Lindley (GPL) linear model. The GPL linear model is performed by applying generalized linear model to GPL distribution. The model parameters are estimated by the maximum likelihood estimation. We utilize the GPL linear model to fit two real data sets and compare it with the Poisson, negative binomial (NB) and Poisson-weighted exponential (P-WE) models for count data. It is found that the GPL linear model can fit over-dispersed count data, and it shows the highest log-likelihood, the smallest AIC and BIC values. As a consequence, the linear regression model from the GPL distribution is a valuable alternative model to the Poisson, NB, and P-WE models.

Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2016.1260095 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:44:y:2017:i:15:p:2659-2671

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2016.1260095

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:44:y:2017:i:15:p:2659-2671