Simulated maximum likelihood estimation in joint models for multiple longitudinal markers and recurrent events of multiple types, in the presence of a terminal event
M. H. Hof,
J. Z. Musoro,
R. B. Geskus,
G. H. Struijk,
I. J. M. ten Berge and
A. H. Zwinderman
Journal of Applied Statistics, 2017, vol. 44, issue 15, 2756-2777
Abstract:
In medical studies we are often confronted with complex longitudinal data. During the follow-up period, which can be ended prematurely by a terminal event (e.g. death), a subject can experience recurrent events of multiple types. In addition, we collect repeated measurements from multiple markers. An adverse health status, represented by ‘bad’ marker values and an abnormal number of recurrent events, is often associated with the risk of experiencing the terminal event. In this situation, the missingness of the data is not at random and, to avoid bias, it is necessary to model all data simultaneously using a joint model. The correlations between the repeated observations of a marker or an event type within an individual are captured by normally distributed random effects. Because the joint likelihood contains an analytically intractable integral, Bayesian approaches or quadrature approximation techniques are necessary to evaluate the likelihood. However, when the number of recurrent event types and markers is large, the dimensionality of the integral is high and these methods are too computationally expensive. As an alternative, we propose a simulated maximum-likelihood approach based on quasi-Monte Carlo integration to evaluate the likelihood of joint models with multiple recurrent event types and markers.
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2016.1262336 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:44:y:2017:i:15:p:2756-2777
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2016.1262336
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().