Bayesian binary quantile regression for the analysis of Bachelor-to-Master transition
Cristina Mollica and
Lea Petrella
Journal of Applied Statistics, 2017, vol. 44, issue 15, 2791-2812
Abstract:
The multi-cycle organization of modern university systems stimulates the interest in studying the progression to higher level degree courses during the academic career. In particular, after the achievement of the first level qualification (Bachelor degree), students have to decide whether to continue their university studies, by enrolling in a second level (Master) programme, or to conclude their training experience. In this work we propose a binary quantile regression (BQR) approach to analyse the Bachelor-to-Master transition phenomenon with the adoption of the Bayesian inferential perspective. In addition to the traditional predictors of academic outcomes, such as the personal characteristics and the field of study, different aspects of student's performance are considered. Moreover, the role of a new contextual variable, representing the type of university regulations experienced during the academic path, is investigated. The utility of the Bayesian BQR to characterize the non-continuation decision after the first cycle studies is illustrated with an application to administrative data of Bachelor graduates at the School of Economics of Sapienza University of Rome. The method favourably compares with more conventional model specifications concerning the conditional mean of the binary response.
Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2016.1263835 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:44:y:2017:i:15:p:2791-2812
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2016.1263835
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().